Math 245B Lecture 23 Notes Daniel Raban March 8, 2019 # 1 Translation Operators and Relationships Between L^p Spaces #### 1.1 Translation operators on L^p spaces Let m be Lebesgue measure on \mathbb{R}^d , and let $t \in \mathbb{R}^d$. Let $\tau_t : \mathbb{R}^d \to \mathbb{R}^d$ send $v \mapsto v - \tau$. This is translation by t, and Lebesgue measure is translation invariant. **Lemma 1.1.** The map T_t sending $f \mapsto f \circ \tau_t$ is an isometry $L^p(m) \to L^p(m)$ for all p. However, the functions T_t are not kernel operators. **Lemma 1.2.** Let $p < \infty$. Let $(t_n)_n$ in \mathbb{R}^d be such that $t_n \to 0$. Then $T_{t_n} \to \operatorname{Id}$ on $L^p(m)$ in the strong operator topology but not in $\|\cdot\|_{\operatorname{op}}$. *Proof.* $C_c(\mathbb{R}^d)$ is dense in $L^p(m)$. Let $f \in L^p$. Suppose first that $f \in C_c(\mathbb{R}^d)$. Pick R such that $f|_{B_R^c} = 0$. Given $\varepsilon > 0$, there exists $\delta > 0$ such that if $|z-y| < \delta \implies |f(x)-f(y)| < \varepsilon$. If $|t_n| < \delta$, then $$||T_{t_n}f - f||_p^p = \int_{\mathbb{R}^d} |f(x - t_n) - f(x)|^p dm(x)$$ $$= \int_{B_{R+1}} |f(x - t_n) - f(x)|^p dm(x)$$ $$\leq \varepsilon^p m(B_{R+1})$$ $$\xrightarrow{t_n \to 0} 0.$$ Similarly, the map $\mathbb{R}^d \to \mathcal{L}(L^p(m), L^p(m))$ sending $t \mapsto T_t$ is continuous from \mathbb{R}^d to the strong operator topology. For general $f \in L^p(m)$, let $\varepsilon > 0$. Choose g $inC_c(\mathbb{R}^d)$ such that $||f - g||_p < \varepsilon/3$. Choose n large enough such that $||T_{t_n}g - g||_p < \varepsilon/3$. Put together, $$||T_{t_n}f - f||_p \le ||T_{t_n}(f - g)|| + ||T_{t_n}g - g||_p + ||f - g||_p$$ $$\le ||f - g|| + ||T_{t_n}g - g||_p + ||f - g||_p$$ $$< \varepsilon.$$ Now let's show that this convergence does not occur in the norm topology. For any $t \neq 0$, there exist $f \in C_c(\mathbb{R}^d \text{ such that } ||f||_p = 1 \text{ and } f|_{B^c_{t/2}} = 0$. Then $$||T_t f - f||_p = 2^{1/p} ||f||_p.$$ ### 1.2 Relationships between L^p spaces What is the relationship between L^p spaces for different p? **Example 1.1.** Look at $((0,\infty))$, $\mathcal{B}_{(0,\infty)}$, m). Let $1 \leq p < q < \infty$. Let $f_a(x) = x^{-a}$ for some choice of a > 0. Observe: - 1. The function $f_a \mathbb{1}_{(0,1)} \in L^p$ iff p < 1/a. - 2. The function $f_a \mathbb{1}_{(1,\infty)} \in L^p$ iff p > 1/a. So $L^p \setminus L^q \neq \emptyset$, and $L^q \setminus L^p \neq \emptyset$. **Proposition 1.1.** If $0 , then <math>L^q \subseteq L^p + L^r$. *Proof.* Let $f \in L^q$. Write $f = f \mathbb{1}_{\{|f| > 1\}} + f \mathbb{1}_{\{|f| \le 1\}}$. Then $$||f\mathbb{1}_{\{|f|>1\}}||_p^p = \int_{|||f|>1\}} |f|^p \, d\mu \le \int_{|||f|>1\}} |f|^q \, d\mu \le \int |f|^q \, d\mu = ||f_q||^q < \infty.$$ The same holds for $f \mathbb{1}_{\{|f| \leq 1\}}$. **Proposition 1.2.** If $0 , then <math>L^p \cap L^r \subseteq L^q$, and $||f||_q \le ||f||_p^{\lambda} ||f||_r^{1-\lambda}$, where $1/q = \lambda(1/p) + (1-\lambda)(1/r)$. *Proof.* It suffices to prove the inequality. $$\int |f|^q d\mu = \int |f|^{\lambda q} |f|^{(1-\lambda)q} d\mu$$ Use Hölder's inequality, where 1/s + 1/t = 1. We will pick the values of s, t later to make sure they work out. $$\leq \left(\int |f|^{\lambda q s} d\mu\right)^{1/s} \left(\int |f|^{(1-\lambda)qt} d\mu\right)^{1/t}$$ Pick $s = p/(\lambda q)$ to make things work out as stated in the theorem. $$\leq \|f\|_p^{\lambda q} \|f\|_r^{(1-\lambda)q}.$$ There is, however, a case where the tails of functions do not count. **Lemma 1.3.** If $\mu(X) < \infty$ and $0 , then <math>L^p \supseteq L^q$. In particular $||f||_p \le ||f||_q \mu(X)^{1/p-1/q}$. *Proof.* Let $f \in L^q$. Then, by Hölder's inequality, $$||f||_p^p = \int |f|^p \mathbb{1}_X d\mu \le ||f||_q (\mu(X))^{1/p - 1/q}.$$ **Lemma 1.4.** Let A be any set. Let $\ell^p(A) = L^p(A, \mathscr{P}(A), \#)$. Then $\ell^p \subseteq \ell^q$. *Proof.* If $q = \infty$, then $$\sup_{\alpha} |f(\alpha)| = (\sup_{\alpha} |f(\alpha)|^p)^{1/p} \le \left(\sum_{\alpha} |f(\alpha)|^p\right)^{1/p} = ||f||_p.$$ If $p < q < \infty$, then by the previous lemma, $$||f||_q \le ||f||_p^{\lambda} ||f||_{\infty}^{1-\lambda} \le ||f||_p^{\lambda+1-\lambda} = ||f||_p.$$ #### 1.3 Distribution functions Fix (X, \mathcal{M}, μ) , and let $f: X \to \mathbb{C}$ be measurable. **Definition 1.1.** The distribution function of f, $\lambda_f : (0, \infty) \to [0, \infty]$, is $$\lambda_f(\alpha) = \mu(\{|f| > \alpha\}).$$ **Proposition 1.3.** Let λ_f be the distribution function of f. - 1. λ_f is non-increasing and right-continuous. - 2. If $|f| \leq |g|$, then $\lambda_f \leq \lambda_q$. - 3. If $|f_n| \uparrow |f|$, then $\lambda_{f_n}(\alpha) \uparrow \lambda_f(\alpha)$. - 4. If f = g + h, then $\lambda_f(\alpha) \leq \lambda_g(\alpha/2) + \lambda_h(\alpha/2)$.